

Grant Agreement 700359

PEM Electrolyser for operation with off-grid Renewable Installations. ELY4OFF Project

Pedro Casero

Head of Innovation Department(FHa)

Huesca, 23 May 2019

MOTIVATION OF THE PROJECT

2) Diesel pollution

4) Suitable storage systems for RES

PROJECT SUMMARY

Purpose: the **development** and **demonstration** of an autonomous **off-grid** electrolysis system linked to **renewable energy sources**.

The *PEMWE* (Polymer Electrolyte Membrane Water Electrolyser) **industrial prototype** (50 kW) will be **directly linked** to track the solar **photovoltaic** power source producing over 1.5 tonnes of hydrogen per year and ensuring cold start and rapid response to changes

The *demonstration* **period** in a relevant environment (TRL 6) will last **8 months** and will take place in Huesca, Spain.

Grant number	700359
Start date	01/04/2016
End date	30/09/2019
Total Budget (€)	2.315.217,50 €

FCH

Challenge 1

Efficient and quick-response energy tapping

POWER ELECTRONICS SELECTION

ITM Tecnhology

Advantages:

• High conversion efficiency

FCH

- Optimal MPPT
- Redundancy
- Easy to control

Disadvantages:

 New DC/DC technology to be developed

DCDC CONVERTERS

- ✓ To adapt the voltage produced by the PV field to the required voltage of the stack (with MPPT)
- ✓ Capable of following RES variability quickly
- ✓ **Novel** electronic structure
- ✓ Effiencies > 92% in all conditions
- ✓ **13 units** (4,8 kW)

DCDC CONVERTERS

Challenge 2

Efficient and safe hydrogen production

HGAS PEM ELECTROLYSER

- ✓ Promising results, but an MEA could not be developed in time -> a commercial MEA was tested
- ✓ Optimization of BoP consumption (variable pump, thermal insulation, ...) < 1kW during nights (except anti-freezing actions)
- ✓ Non-typical FAT: no rectifier at factory -> on site after DCDC integration
- ✓ Final tests done 5-8 Feb 19 were successful: good dynamic response
- ✓ Many control modifications due to off-grid

ELECTROLYSER CONTAINER

Challenge 3

Robust energy management & vital support

ANIVERSAR

HYBRID STORAGE SYSTEM (Approach 2)

FCH)

ely₄

FC AND MICROGRID SCADA SCREENSHOTS

Challenge 4

An efficient and reliable control and command system of the whole plant

OVERARCHING COMMUNICATION AND CONTROL

OVERARCHING COMMUNICATION AND CONTROL SYSTEM (C&CS)

CHALLENGE

To estimate available power when the PEMWE is not in generation to decide to enter in production

PROBLEM

power from PV is estimated with radiation

SOLUTION

Data analytics for power-radiation estimation:

- a. Historical data (radiation, T^a amb)
- b. Interpolation between hourly values of radiation

Plus shadow correction!

ELY4OFF SCADA SCREENSHOT

DEMO-SITE

DEMO SITE (Huesca)

FCH

DEMO SITE (Huesca)

HYBRID STORAGE SYSTEM

DEMONSTRATION PHASE

.....

DEMO PHASE RESULTS

113 kilograms of renewable hydrogen produced in 73 days!

KPIs of the system: on evaluation

Efficiency, lifetime and voltage degradation

Parameter	ID	Units	Ely4off target (proposal)
Efficiency	KPI_1	kWh/kg	System 50 Stack 42.4 92.5% at 100% load
	KPI_2	kWh/Nm³	4
Stack	KPI_3	h	
lifetime	KPI_4	years	8
System	KPI_5	h	
lifetime	KPI_6	years	20
Efficiency degradation	KPI_7	%/year 8000h	2
A 11 - 1- 1114	KPI_8	h/year	
Availability	KPI_9	%	
Capital cost			
Parameter	ID	Units	Ely4off target (proposal)
CAPEX	KPI_10	M€/(t/d)	6
UAPEA	KPI_11	EUR/kW	
Stack			

Parameter	ID	Units	Ely4off target (proposal)
Stack size	KPI_12	kW	50
Stack	KDI 17	Nm³/h H ₂	>13
capacity	KPI_13	kg/d H2	

Operating conditions

Parameter	ID	Units	Ely4off target (proposal)
Current density	KPI_14	A/cm²	1
Output pressure	KPI_15	bar	20
Operating temperature	KPI_16	°C	60

Dynamic and flexible operation			
Parameter	ID	Units	Ely4off target (proposal)
H ₂ production flexibility with a degradation < 2%	KPI_17	Load Spanning Range (%)	5 - 150%
Hot start (min to max power)	KPI_18	seconds	2
Cold start (min to max power)	KPI_19	minutes	<5
Minimum part Ioad	KPI_20	%	10
Ramp up (sec to full load)	KPI_21	% full load/s	2

Others

Parameter	Units	Objectives (D2.4)
Capacity of the system - rated	kW	56
Efficiency of the PSU	%	>96
Power of the control system when off	kW	<0.9
Footprint - hydrogen production unit	M2	4
Volume	M3	8
Nature of the electricity source		SOLAR
Fraction of renewable energy input	%	100
Quality required for water	μS	<1
Purity of the produced hydrogen - rated	%	99.9995
Type of power converter		DC-DC
Input voltage	V	800
Power usage of auxiliary equipment - idle	kW	0.9
Power usage of auxiliary equipment -	kW	7
max production		,
Electrical efficiency of the system (rated -	%	82
HHV - AC current)		
Cost - capital cost of the system (per	M€/t/d	0.015
ton/day) @ mass production (estimate)		
Start date for reporting		
End date for reporting		
Number of safety incidents - total		
Electricity consumed		
Energy consumption for hydrogen		
compression		
Hours of operation		
Days of operation		

Wait, there are more ...

Regulation, barriers, business cases, ...

ODDISEY SOFTWARE

BUSINESS CASES

RE-ELECTRIFICATION

POWER TO GAS

MOBILITY

CURRENT STATUS

✓ Demo is on-going:

- \checkmark Storage of information for <u>data analytics</u>
- ✓ Currently criteria is to maximize H2 production, but <u>forecasting</u> of solar production and prediction of demand via self-learning may be useful
- ✓ <u>Predictive</u> maintenance
- ✓ <u>Optimization</u> of energy flows to increase overall efficiency (e.g. optimal usage of batteries avoiding very short isolated charging periods, etc.)
- ✓ Study on adaptations for <u>other configurations</u> (e.g. micro-grid connected to main electricity network, connection of mini-wind turbines, etc.)
- ✓ Other **on-going activities**: LCA, cost analysis, exploitation plan, ...

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No (700359). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Many tanks for your attention,

Pedro Casero Head of Innovation Department <u>pcasero@hidrogenoaragon.org</u>