

Low-temperature water electrolysis (LTWE) harmonisation activities framed within JRC-FCH2JU FWC

<u>Thomas MALKOW</u>, Georgios TSOTRIDIS, Alberto PILENGA European Commission, Joint Research Centre (JRC), NL-1755 LE Petten

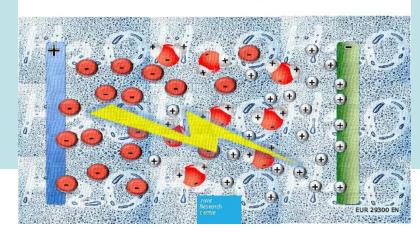
EU Workshop - Electrolysis: features, capabilities and projections, 23 May 2019, Huesca, Spain

LTWE harmonisation efforts – why and how

Under the JRC-FCH2JU Framework Contract, JRC

- Contributes to formulation and implementation of the FCH2JU strategy and activities in the areas of RCS, public safety, technology monitoring and assessment.
- Provides added value to programme objectives by complementing activities of funded projects.
- JRC deliverables are part of the FCH2JU AWP's

LTWE harmonisation efforts – status pre-2019 RP

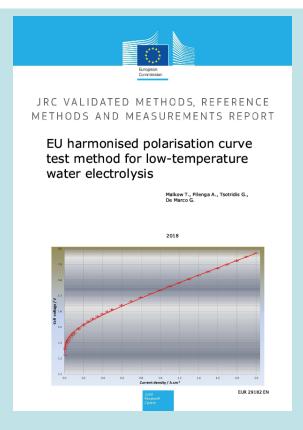


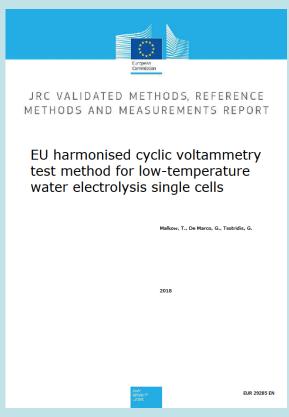
JRC TECHNICAL REPORTS

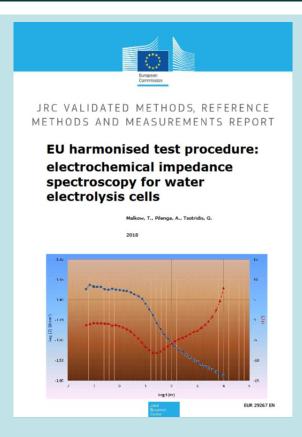
EU harmonised terminology for low-temperature water electrolysis for energy-storage applications

Tsotridis G., Pilenga A.

2018




 EU harmonised terminology for lowtemperature water electrolysis for energy-storage applications – published

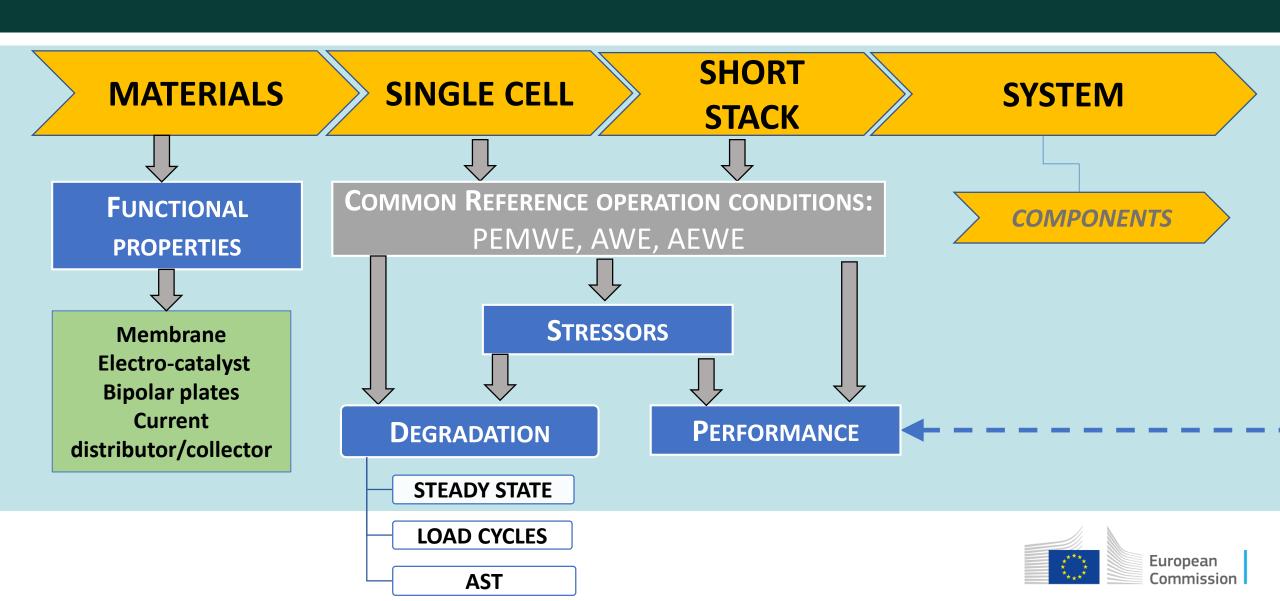

Also input to the work of WG1 "Terms and Definitions" of CEN/CLC/JTC6 "Hydrogen in energy systems"

LTWE harmonisation efforts – JRC deliverables: Three testing procedures - published

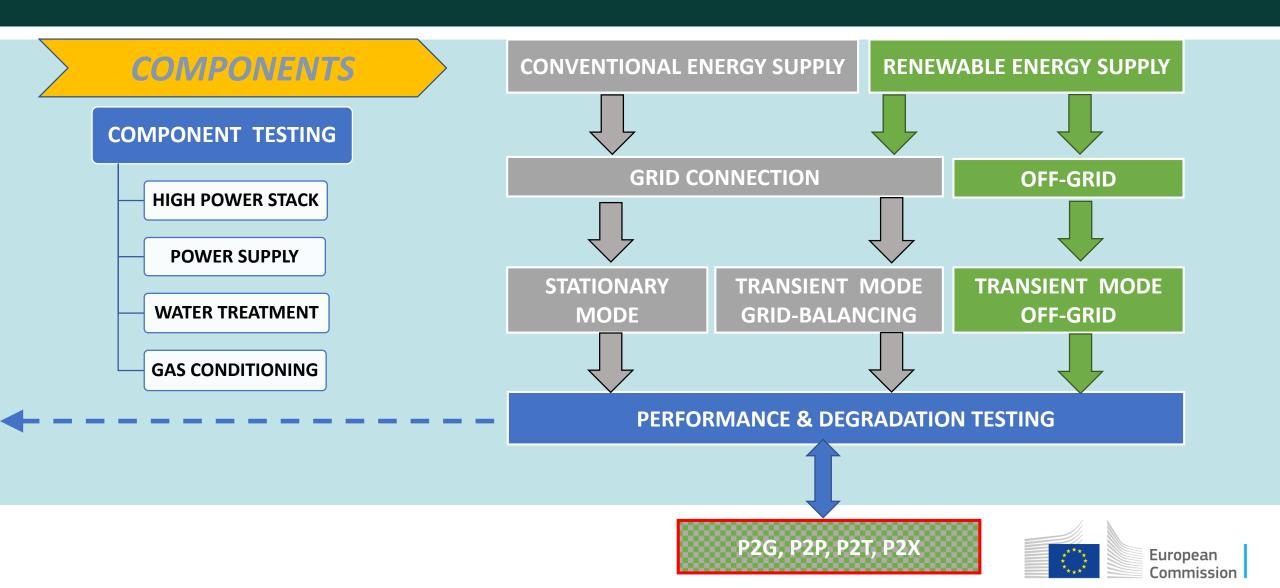
Also input to the work of WG13 (now WG16)
"Energy storage systems using fuel cell modules in reverse mode" of IEC/TC105 "Fuel Cell Technologies"

LTWE harmonisation - Testing protocols for PEMWE, AWE & AEMWE technologies - in progress

EU HARMONISED TEST PROTOCOLS FOR LOW TEMPERATURE WATER ELECTROLYSIS FOR ENERGY STORAGE APPLICATIONS


It completes the set of LTWE harmonisation documents.

Current status:


- o over 100 pages document and still evolving
- Contribution from projects (i.e. QualyGrids)
- o not too late to provide comments & suggestions
- o in particular, input on AWE is welcome

Scope of LTWE testing harmonisation

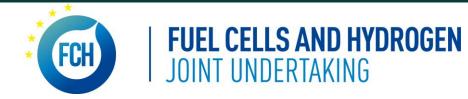
SYSTEM TESTING

Formulary for efficiency: current, energy, overall

ENERGY EFFICIENCY — $arepsilon$			
Single cell	Note	Equation No	
$U_{rev}^0 = \Delta G^0/(n F)$	1.229 V under SATP	[3]	
$\begin{split} U_{rev}(T,1atm) &= 1.5184 - 1.5421 \cdot 10^{-3} \cdot T + 9.523 \\ & \cdot 10^{-5} \cdot T \cdot Ln(T) + 9.84 \cdot 10^{-8}T^2 \end{split}$	U _{rev} in the 0-100 °C temperature range	[22]	
$U_{tn}^0 = \Delta H^0/(n F)$	1.481 V under SATP	[4]	
$U_{ln}(T, 1atm) = 1.485 - 1.49 \cdot 10^{-4} \cdot (T - T^{0}) - 9.84 \cdot 10^{-8} \cdot (T - T^{0})^{2}$	U _{tn} in the 0-100 °C temperature range	[23]	
$arepsilon_{cell,case1} = rac{U_{tn}}{U_{tn} + U_{cell} - U_{rev}}$	Case 1 Constant heat input-based definition	[9]	
$\varepsilon_{cell,case1} = \frac{U_{tn}(T,p)}{U_{tn}(T,p) + U_{cell}(T,p) - U_{rev}(T,p)}$	Case 1 For any T,p conditions	[11]	
$\epsilon_{cell,case2} = rac{u_{rev}}{u_{cell}}$	Case 2 Free energy-based definition	[12]	
$\varepsilon_{cell,case2}(T,p) = \frac{U_{rev}(T,p)}{U_{cell}(T,p)}$	Case 2 For any T,p conditions	[14]	
$\varepsilon_{cell,case3} = \frac{n \cdot F \cdot U_{tn}}{n \cdot F \cdot U_{tn}}$	Case 3 $\varepsilon = 1$ When $U_{rev} < U_{cell}$ $\leq U_{tn}$	[15] [16]	
$arepsilon_{cell,case3} = rac{U_{tn}}{U_{cell}}$	Case 3 Enthalpy-based definition when U _{cell} >U _{tn}	[17]	

CURRENT EFFICIENCY $-\eta_I$			
Single cell	Note	Equation No	
$\begin{split} \eta_I(T,P,I) &= 1 - \frac{2 \cdot F}{I_{DC}} \\ & \cdot \left[\dot{n}_{H_{2,\mathrm{Joss}}}(T,p,I) + 2 \dot{n}_{\theta_{2,\mathrm{Joss}}}(T,p,I) \right] \end{split}$	General formula (academic viewpoint)	[38]	
$\eta_{I}^{H_{2}} = \frac{2 \ F \ \dot{n}_{H_{2} \ measured}}{I_{DC}}$	Hydrogen production efficiency (industry viewpoint)	[39]	
$\eta_{I}^{O_{2}} = rac{4\;F\;\dot{n}_{O_{2}measured}}{I_{DC}}$	Oxygen production efficiency (industry viewpoint)	[40]	
Stack			
$\eta_{Istack}^{H2} = \frac{2 \cdot F \cdot n_{H_2}}{I_{DC} \cdot N}$	Hydrogen production efficiency (industry viewpoint)	[41]	
$\eta_{Istack}^{O2} = \frac{4 \cdot F \cdot \dot{n}_{O_2}}{I_{DC} N}$	Oxygen production efficiency (industry viewpoint)	[42]	

Overall efficiency $-\eta_{\omega}$			
Single cell	Note	Equation No	
$\eta_{\omega}^{cell} = \varepsilon_{cell} \cdot \eta_{\omega}^{cell}$	Total efficiency (academic viewpoint)	[43]	
$\eta^{HHV} = \frac{HHV \cdot}{P_{thermal} + P_{electrical}} \cdot \dot{n}_{H_2}$	Instantaneous cell efficiency (industry viewpoint)	[45]	
$\eta^{HHV} = \frac{HHV \cdot \dot{n}_{H_2} \cdot \Delta t}{W_e + Q_{cell} + Q_{H2O}}$	Integral form of cell efficiency (stationary operating conditions)	[46]	
Stack			
$\eta_{\omega}^{stack} = \varepsilon_{stack} \cdot \eta_{I}^{stack}$	Total efficiency (academic viewpoint)	[44]	
Component			
$\eta_{component}^{HHV} = \frac{HHV}{P_{component\ extern}} \dot{n}_{H_2}$	Component efficiency	[47]	
System			
$\eta_{system}^{HHV} = \frac{HHV}{P_{system~extern}} \cdot \dot{n}_{H_2}$	System efficiency (industry viewpoint)	[48]	
$\varepsilon_{system} = \frac{N \cdot U_{tn}(T,p)}{U_{stack}} \left(\frac{\eta_{AC/DC}}{1+\xi} \right)$	System efficiency excluding faradic efficiency (industry viewpoint)	[49]	
$\varepsilon_{system} = \frac{N \cdot U_{tn}(T, p)}{U_{stack}} \cdot \frac{2 \cdot F \cdot n_{H_2}}{I_{DC} \cdot N} \cdot \left(\frac{\gamma_{AC/DC}}{1 + \xi}\right)$	System efficiency including faradic efficiency (industry viewpoint)	[50]	



Thanks to our partners for their contributions to documents and FCH2JU for financial support from the Union budget

You can email me: thomas.malkow@ec.europa.eu

Stay in touch!

ec.europa.eu/jrc

- B
- @EU_ScienceHub
- •
- EU Science Hub Joint Research Centre
- in
- Joint Research Centre
- You Tube

EU Science Hub

OPEN ACCESS TO JRC RESEARCH INFRASTRUCTURES

accessible at https://ec.europa.eu/jrc/en/research-facility/open-access

