

Electrolysis - key element for energy and fuel transition

Johannes Daum | Team Leader Power-Based Fuels, NOW GmbH Workshop ADVANCED ALKALINE ELECTROLYSIS | Dresden | 19th of September 2018 |

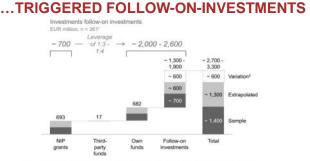
NOW GmbH – Who we are

- NOW: National Organization Hydrogen and Fuel Cell Technology
- **GmbH**: Owner is the Federal Republic of Germany (represented by BMVI)
- Founded 2008 for the implementation of the National Innovation Program Hydrogen and Fuel Cell
 Technology
- Current task: Concept development, coordination and implementation of national strategies and public-private programs for future mobility concepts
- Currently 42 employees

Fasanenstr.5 | D-10623 Berlin | Germany Phone: +49 30 311 61 16-00 Email: kontakt@now-gmbh.de Internet: www.now-gmbh.de

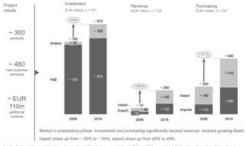
NOW GmbH – Tasks and Projects

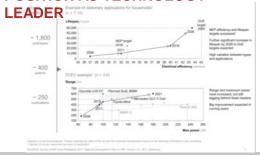
National Organisation Hydrogen and Fuel Cell Technology


Programme coordination and implementation, strategy development, networking and contribution to visibility

THE NATIONAL INNOVATION PROGRAM HYDROGEN AND FUEL CELL TECHNOLOGY (NIP)

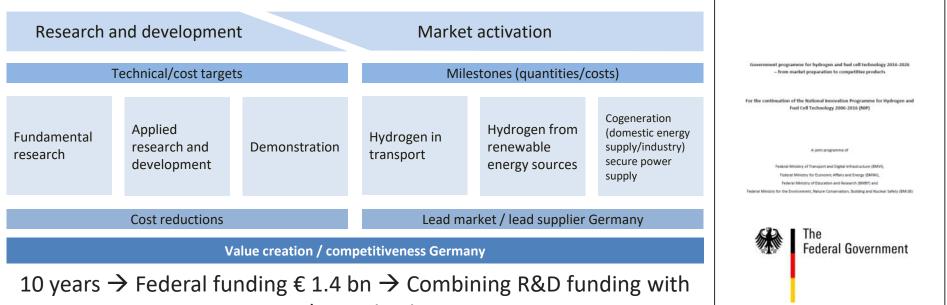
PHASE 1 (2007 – 2016)...



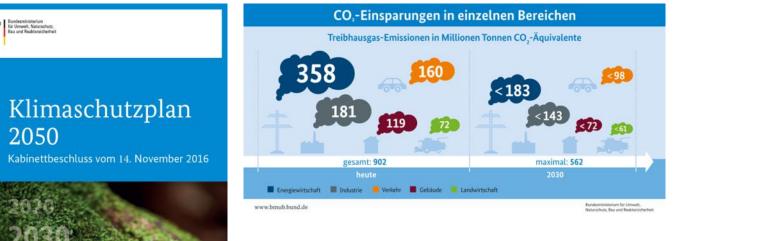

...710 MILLION EURO PUBLIC R&D FUNDINGSAFEGUARDED GERMANY'S Scale, EUR m 10 50 100 150 200 250 300 350 400

Total volume and grant proportion Market Basic research1 Applied R&D Support activities projects1 activation² 44 (46%) 0 (41%) Transport 4 (49%) 33 (49%) 13 (39%) 9 (48%) Household power 4 (46%) 40 (48%) 3 (45%) Special markets 8 (40%) 32 (60%) 76 (40%) 1 (46%) 170 Industry 8 (43%) 83 6 (88%) 67 (60%) T (43%) Transversal topics 30 (50%) 55 H₂ production 5 (86%) 18 (59%) 2 (100%) Total 16 21

...ACCELERATED MARKET DEVELOPMENT


POSITION AS TECHNOLOGY

GOVERNMENT PROGRAMME 2016 - 2026 CONTINUING THE NATIONAL INNOVATION PROGRAMME HYDROGEN AND FUEL CELL TECHNOLOGIES (NIP)

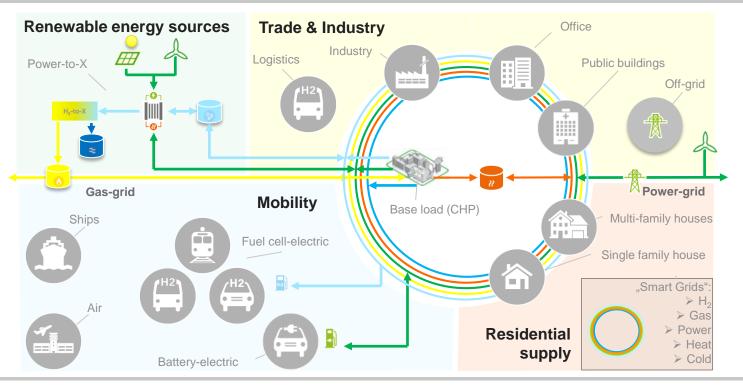


market activation

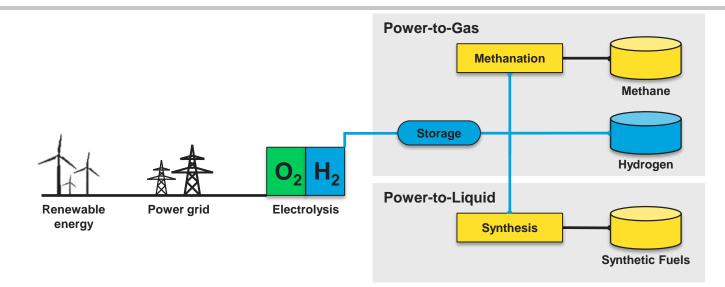
Political framework – German Climate Action Plan 2050

National implementation of the Parise Climate Agreement

- CO₂ reduction goals for all sectors
- Concept development for the 2030 goals and long-term plan to reach the goals in 2050
- Presentation of the concepts in 2018


GERMAN COALITION AGREEMENT BETWEEN CDU, CSU AND SPD IS STRONGLY REFERRING TO HYDROGEN TECHNOLOGIES

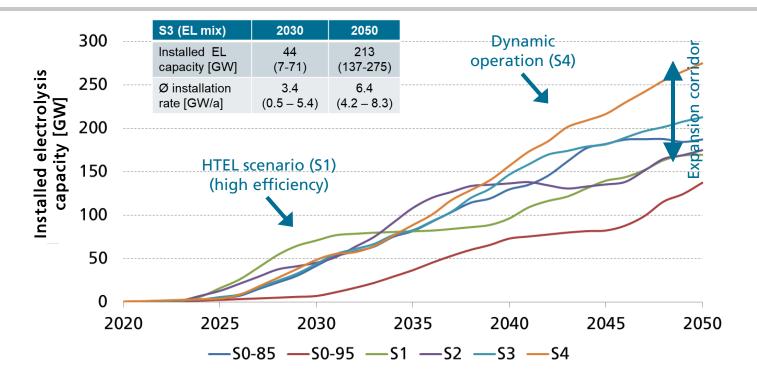
"Investing in electro mobility, amongst others in hydrogen and fuel cells."	Barlin 7. Eabruar 2018
"We want to set up a Fraunhofer Institute for Storage Technology and inte	
competences. We want to strengthen hydrogen technologies."	
We want to push electromobility (battery electric, hydrogen and fuel cell)	
forward in Germany and enhance and increase the existing subsidies framework beyond the	
year 2020.	Ein neuer Aufbruch für Europa Eine neue Dynamik für Deutschland
We want to intensify the construction of a nationwide charging and refueling infrastructure.	Ein neuer Zusammenhalt für unser Land Koalitionsvertrag
We want to continue the National Innovation Program on Hydrogen and	zwischen CDU, CSU und SPD
fuel cell technologies. We want to develop the mobility and	
fuel strategy (MKS) technology-neutral and increase the means to their	
implementation. We want to advance "sectorcoupling" and	
change the regulative framework, so that "green hydrogen" and hydrogen as a	
product from industrial processes (byproduct) be utilized as a fuel or for the production	
of conventional fuels (eg natural gas).	
Concerning rail passenger transport we want to set up a comprehensive funding program	
We want to increase subsidies for fuel cell hybrid railcars incl. Ed	quipment / conversion of
depots and construction and operation of hydrogen refueling st	ations.
At national level, we want to strengthen and stabilize our technology-neutral initiatives in	
favor of alternative drivetrains and energy sources in shipping and in ports (LNG,	
Hydrogen / fuel cell, methanol, electromobility).	source: http://hydrogeneurope.eu/wp-content/uploads/2018/02/COALITION.pdf


Integrated energy system -

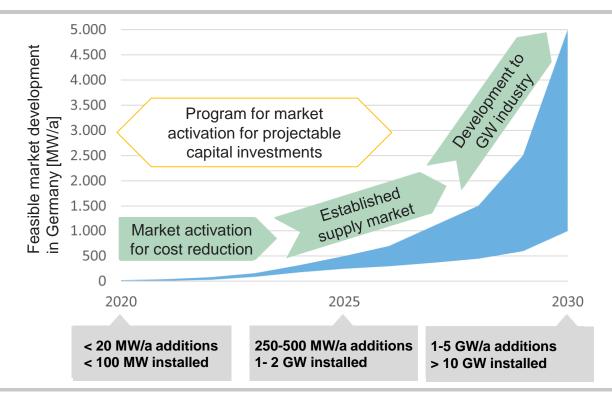
Renewable, flexible and connected across all sectors

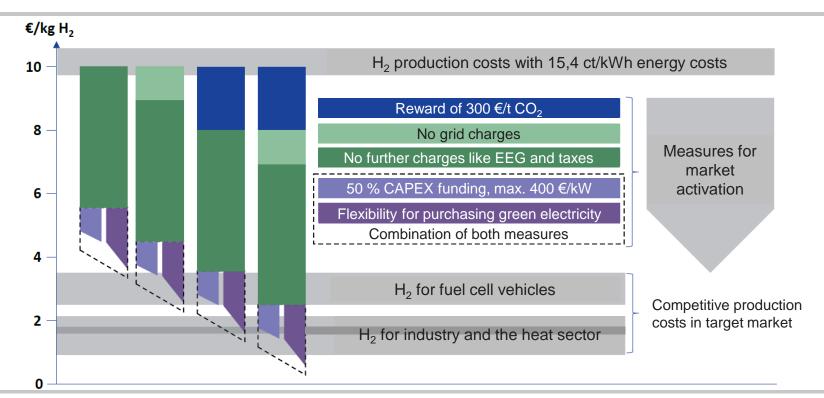
Integrated energy system – Water electrolysis as key technology

- Emission-free production of hydrogen with water electrolysis technology
- Hydrogen as feed stock for the production of synthetic fuels (i.e. Kerosene, syn. Diesel)

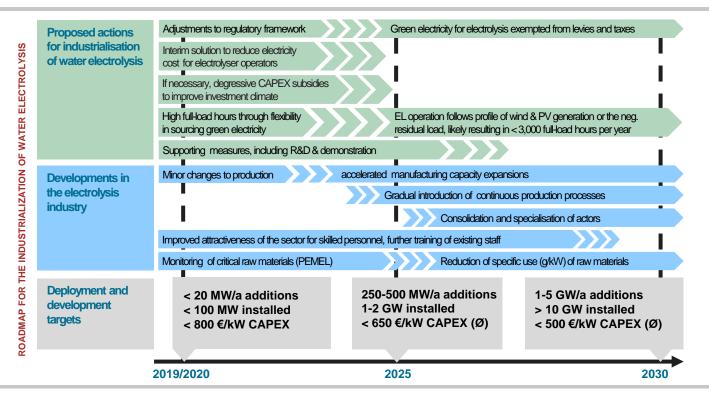

Integrated energy system – Current study on water electrolysis

Industrialization water electrolysis -


Development of installed water electrolysis capacity


Industrialization water electrolysis -

Development of installed water electrolysis capacity



Industrialization water electrolysis – Measures to reduce hydrogen costs

Industrialization water electrolysis – Roadmap

Electrolysis is a key technology for an integrated energy system based on renewable electricity

Technology is mature

Market uptake is needed for economies of scale

First step to overcome is a production capacity of 1-2 GW installed

Policy measures for supporting hydrogen are discussed at national as well as EU level

_ _ _

Thank you!

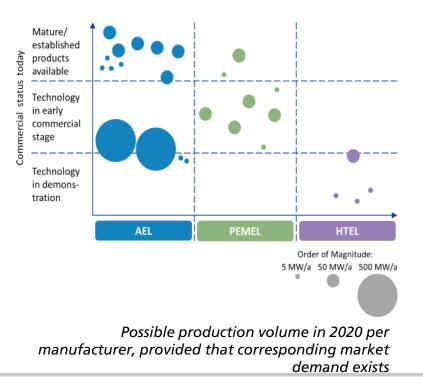
Johannes Daum

Team Leader Power-Based Fuels

NOW GmbH – National Organisation Hydrogen and Fuel Cell Technology Fasanenstr.5 | D-10623 Berlin | Germany Phone: +49 30 311 61 16-49 Email: johannes.daum@now-gmbh.de Internet: www.now-gmbh.de

Annual Report 2017

Industrialization water electrolysis –

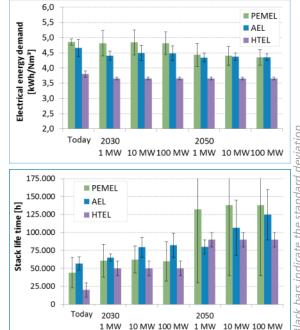

Comprehensive survey with interviews & questionnaires

Key features:

- Sold EL capacity: ~ 100 MW/a
- Global sales : 100-150 Mio. €/a
- Direct employees: ~ 1.000
- Possible ramp-up in manufacturing capacity by 2020: ~ 2 GW

How do electrolysis system manufacturers work today?

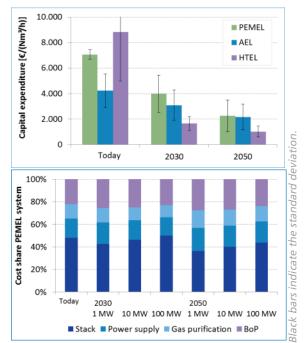
- Standardized stack platforms
- Single order production
- 'Project-by-project' business without stock-keeping



Industrialization water electrolysis –

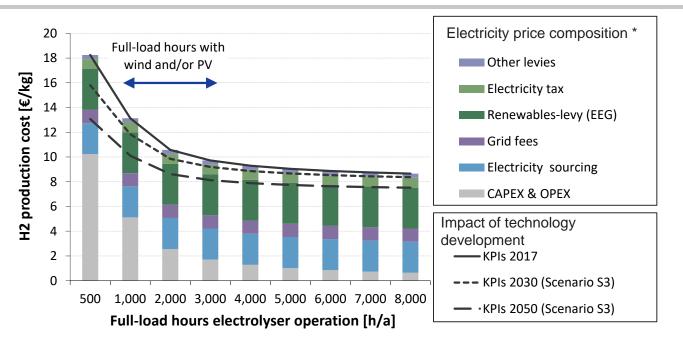
Electrical energy demand and stack life-time

- Feedback partially contradictory (respondents applied different system boundaries)
- PEMEL higher than AEL \rightarrow adjusted in 2050
- HTEL shows better (electrical) efficiency
 - But steam is required (ca. 200 °C)
- No substantial improvement in 2030/50
- Stack life-time in operating hours Uncertainties (see standard deviation) Ambitious expectations in this survey
 - 20 30 years @ 4.000 h/a (full load)
 - Missing confirmation from literature
- Stack replacement required over total lifetime



Industrialization water electrolysis –

Capital expenditure and cost break down


- Low CAPEX still main selling point!
 - Price pressure on the market with tenders for large systems
 - Future cost parity between PEMEL and AEL
- APEX Ambitious CAPEX projection for HTEL
 - Potentially low cost, but high uncertainty
 - Feedback in agreement with literature
 - Stack dominant, but less than 50 %
 - Power supply 2nd major cost contributor
 - Stack share increases with system size
 - Similar results for AEL systems
- Cost Insufficient responses for HTEL systems

breakdown

Industrialization water electrolysis – Cost aspects for hydrogen production

* 15,4ct/kWh average electricity price for industrial users in 2016 for annual consumption of 0.16 to 20 million kWh. Mid-voltage level connection 100kW/1.600h to 4.000kW/5.000h. Source: "BDEW Strompreisanalyse 2018"

