

Green hydrogen for CO₂ conversion to valuable chemicals

Development of a combined process for CO₂ scrubbing and hydrogenation to methanol

Dr.-Ing. Jörg Nitzsche, M.Sc. Jenö Schipek

DBI Gas- und Umwelttechnik GmbH

Advanced alkaline electrolysis and applications – 2nd workshop of Elyntegration

Dresden, September 19th 2018

Expanding production and demand (p.a., world)

- 2005: 35.8 million t [1]

- 2010: 45.2 million t [1]

- 2015: 75.0 million t^[2]

Broad usage

- Chemical industry
 - Formaldehyde further treated to resins, glues and plastics
 - Acetic acid polyester fibres and PET plastics
 - Olefins via MTO process, new fast growing market (PRC)
- Transportation
 - Blend (M15) or direct/indirect use (MTBE)
 - High octane number (106)
 - Reduction of emissions (NO_x, HC, CO)

Methanol Use - World

www.methanolmsa.com / 2012

www.bluefuelenergy.com / 2018

METHANOL - NUMBERS & FACTS

Conventional production

- Feed: Natural gas/coal
- Conventional methanol synthesis
- Primary energy demand (world): appr. 700 TWh [3]
- CO₂ emissions: about 175 million t
- Usage of carbon dioxide and hydrogen
 - Carbon dioxide demand: 100 million t
 - Hydrogen demand: 14.2 million t
 - → 18.5 million m³/h (8500 h/a)

$CH_4 + H_2O$	$\rightarrow CO + 3H_2$

$$CO+2H_2 \rightarrow CH_3OH$$

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

Ely Technology Level	Conventional	Advanced
Ely efficiency (η _{ely})	65 %	85 %
Ely plant size	10 MW	100 MW
Required electrical power	85.4 GW	65.3 GW
Number of electrolysers	> 8000	650

COOMET - MOTIVATION

- Convert greenhouse gas CO₂ in usable substance
 - Methanol as an energy source, fuel and basic chemical
- State of the art:
 - Washing of CO₂-containing exhaust gases and biogases with alcoholamines → CO₂ absorbed in amines
 - Separation of CO₂ and alcohol-amines
 - Hydrogenation of CO₂ to methanol
- Idea: conversion of the absorbed CO₂ to methanol in an one-step process at lower temperatures

COOMET - COMPARISON OF PROCESSES

Schematic view of the COOMet idea CO₂ Scrubbing Tech

Technical process

- 50...100 bar
- − 240...260 °C
- Cu-ZnO/Al₂O₃
- Recycle unreacted educt

New COOMet process

- 20...30 bar
- − 130...170 °C
- Cu-ZnO/Al₂O₃-Amin

TU Freiberg (IPC)

CO₂-Absorption and Hydrogenation in one Step

- Development of a coupled process of CO₂ collecting and methanol-synthesis
- High efficiency of integrated heat transfer

Partly compensation of ΔH_{des} and ΔH_{hydr}

TU Freiberg (IPC)

Reaction: $CO_{2(g)} + 3 H_{2(g)} \leftrightarrow CH_3OH_{(g)} + H_2O_{(g)}$

 $\Delta H_R^\circ = -49 \text{ kJ/mol}$

COOMET - CHEMICAL REALISATION

- Metal catalyst + amine (function as an organo-catalyst)
- Methanol is the only product
- The other peaks are the amine

Scheme of the catalyst system © TU Freiberg (IPC)

Analysis of NMR-spectroscopy © TU Freiberg (IPC)

COOMET - LAB STUDIES

- First results are created in a batch reactor of TUBAF in 2013 (patented process no.: DE2013201246A1)
- Currently use of a multiplex-reactor-system and a headspace gas chromatograph to get fast in-situ analysis of the product

- Understanding the reaction mechanism
- Determination of the reaction kinetics

Multiplex-reactor-system © TU Freiberg (IPC)

Headspace gas chromatograph © TU Freiberg (IPC)

COOMET - CONCEPT OF THE TECHNICAL PLANT

Process parameters:

- Up to 100 bar (20 bar expected)
- Up to 300 °C (160 °C expected)
- Max. product capacity 0.2 l/h methanol (1 l/h expected)

COOMET - CHALLENGES

Challenges

- Complex process for lab scale
- Amines have low CO₂ capacity
 → high recycling rate
- Amine stability
- Activity and stability of catalyst
- Low amine loss
- High methanol selectivity

P&ID © Amtech

- Size of the lab
- Handling of reactor
- Process handling

COOMET - SUMMARY / NEXT STEPS

Summary

- Process is running in lab scale
- For faster results multiplexreactor-system and a headspace GC necessary
- Planning of the technical scale was difficult but is nearly finished
- Downscale of technical plant necessary for well handling

First layout construction © Amtech

Next steps

- First experiments will be conducted after final planning and construction of the technical plant in the beginning of 2019
- First results are expected in Q2 2019

PROJECT-PARTNER AND SUPPORT

- Technische Universität Bergakademie Freiberg (Institut für Physikalische Chemie)
- DBI Gas- und Umwelttechnik GmbH
- John Brown Voest GmbH
- Advanced Machinery & Technology Chemnitz GmbH
- The project HYPOS-COOMet "Entwicklung eines gekoppelten Verfahrens zur Nutzung von CO₂ für die energetisch optimierte Methanolherstellung" is funded by the Federal Ministry of Education and Research (funding code: 03ZZ0726B).

THANK YOU FOR YOUR ATTENTION!

Your contact partner

Dr.-Ing. Jörg Nitzsche

Head of Department Gas Processing Technology DBI Gas- und Umwelttechnik GmbH Halsbrücker Strasse 34 D-09599 Freiberg Germany

phone: (+49) 3731 4195-331 fax: (+49) 3731 4195-309

e-mail: joerg.nitzsche@dbi-gruppe.de

web: www.dbi-gruppe.de

