

Power to Gas in Aragón

CO2 CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP

Mechanical Engineering Department Escuela de Ingeniería y Arquitectura. Universidad de Zaragoza (Spain)

Luis M Romeo (luismi@unizar.es) ELYNTEGRATION Workshop, November 8th, 2017

INDEX

- ✓ 1. CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP
- ✓ 2. POWER TO GAS AND CO₂ RECYCLE
- ✓ 3. RENEWABLE ENERGY & CO₂ POTENTIAL IN THE PYRENEES
- ✓ 4. POWER TO GAS CARBON CAPTURE HYBRID SYSTEMS
 - ✓ OXYFUEL
 - ✓ AMINE PLANT
- ✓ 5. CURRENT RESEARCH
- ✓ 6. HIGHLIGHTS

Power to Gas in Aragón

Universidad Zaragoza

Main lines of research

- Energy integration and emissions mitigation in industry
- ✓ Energy Storage
- ✓ Carbon capture and utilization
- ✓ Power-to-Gas

Relevant recent projects

2018 - 2020	Storage Horizon 2020, <u>European Union</u>
2017 – 2019	Methane based on renewable energy and carbon capture and utilization, in residential, industrial and transport sectors MINECO, <u>Spanish ministry</u>
2016 – 2018	Hydroxycombustion: towards 3 rd generation of oxy-fuel combustion plants MINECO, <u>Spanish ministry</u>
2015 – 2016	Energy storage (Power-to-Gas) and carbon capture integration in chemical industry with hydrogen production ERCROS S.A., <u>Private project</u>
2013 – 2016	Amine-impregnated Alumina Solid Sorbent for CO ₂ Capture Research Fund for Coal and Steel, <u>European Union</u>
2014 – 2015	Modelling and optimization of CHP plants SAICA-1, SAICA-2, SAICA-3 and SAICA-4 S.A. Industrias Celulosa Aragonesa, <u>Private project</u>
2012 - 2015	Optimisation of oxygen-based CFBC Technology with CO ₂ capture (O2GEN) Seventh Framework Programme, <u>European Union</u>
2014	Innovative Processes: Implementation of Power to Gas technology in the Aragonese Pyrenean region Ministerio de Industria, Comercio y Turismo, Spanish ministry

Power to Gas in Aragón

INDEX

- ✓ 1. CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP
- ✓ 2. POWER TO GAS AND CO₂ RECYCLE
- ✓ 3. RENEWABLE ENERGY & CO₂ POTENTIAL IN THE PYRENEES
- ✓ 4. POWER TO GAS CARBON CAPTURE HYBRID SYSTEMS
 - ✓ OXYFUEL
 - ✓ AMINE PLANT
- ✓ 5. CURRENT RESEARCH
- ✓ 6. HIGHLIGHTS

Power to Gas in Aragón

Energy storage

Surplus electricity from renewable sources is transferred to the natural gas network

Electrolysis

$$\mathrm{H}_{2}\mathrm{O}\leftrightarrow\mathrm{H}_{2}+\frac{1}{2}\mathrm{O}_{2}$$

Methanation

 $CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$

Bailera et al. (2017) Renew. Sust. Energ. Rev., 69, 292-312

Universidad Zaragoza

Power to Gas in Aragón

Power to Gas in Aragón

Power to Gas in Aragón

Universidad Zaragoza

Power to Gas in Aragón

Power to Gas in Aragón

INDEX

 \checkmark

- ✓ 1. CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP
- ✓ 2. POWER TO GAS AND CO₂ RECYCLE

3. RENEWABLE ENERGY & CO₂ POTENTIAL IN THE PYRENEES

- ✓ 4. POWER TO GAS CARBON CAPTURE HYBRID SYSTEMS
 - ✓ OXYFUEL
 - ✓ AMINE PLANT
- ✓ 5. CURRENT RESEARCH
- ✓ 6. HIGHLIGHTS

Power to Gas in Aragón

RENEWABLE ENERGY & CO₂ POTENTIAL IN THE PYRENEES

✓ FdH₂ collaboration

- A detailed analysis of the availability of renewable energy resources (wind energy, solar and hydropower) has been carried out to select the most appropriate renewable source.
 - Wind energy is located far from the Pyrenees region
 - Solar energy is influenced by orientation and not suitable for the reduction of available working hours

- It has been concluded that hydropower is the best option and most flexible for this kind of projects.
- ✓ There are several important sources of CO₂ in the industrialized area but most of them are far from the renewable sources. One specific case has been selected in the Pyrenees region because the industry has also possibilities of excess hydrogen.

Power to Gas in Aragón CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP

INDEX

- ✓ 1. CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP
- ✓ 2. POWER TO GAS AND CO₂ RECYCLE
- ✓ 3. RENEWABLE ENERGY & CO₂ POTENTIAL IN THE PYRENEES
- ✓ 4. POWER TO GAS CARBON CAPTURE HYBRID SYSTEMS
 - ✓ OXYFUEL
 - ✓ AMINE PLANT
- ✓ 5. CURRENT RESEARCH
- ✓ 6. HIGHLIGHTS

Power to Gas in Aragón

Universidad Zaragoza

POWER TO GAS – CARBON CAPTURE HYBRID SYSTEMS

CH₄

Heat

2. PtG - AMINE PLANT

- ✓ O₂ from electrolysis replaces ASU
- Heat from methanation can be integrated in the power cycle of the power plant

- Heat from methanation is integrated in the reboiler of the stripper column
- O₂ integration depends on the application

Power to Gas in Aragón CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP

Power to Gas in Aragón CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP

Power to Gas in Aragón

Power to Gas in Aragón

Universidad Zaragoza

Universidad Zaragoza

APPLIED CASE: Power to Gas - Oxyfuel combined cycle (~30 MWe)

Power to Gas in Aragón

APPLIED CASE: Power to Gas - Oxyfuel combined cycle (~30 MWe)

Electrolysis necessity:

98.2 MWe (same hours in storage/production mode)

Efficiency of the plant:

35.8 MW / 98.2 MW = 36.5%

Converting renewables into manageable sources gives similar efficiencies to those presented by power plants with carbon capture

Advantages:

- No fossil fuel required
- \checkmark No CO₂ to be stored
- PtG-OxyCC can be used to manage renewable surplus

✓ Efficiency: 55.9% \rightarrow 64.0 %

-30 consumption. Sivive

Bailera et al. (2017) Int. J. Hydrog. Energy, 42, 19:13625-13632

Power to Gas in Aragón

APPLIED CASE: Power to Gas - Oxyfuel in small applications

- Oxyfuel boiler integrated with an electrolyser and a methanation reactor applied to supply thermal energy in hotels (medium size, 80 rooms)
- ✓ Efficiencies higher than 50% and fuel savings up to 60% are obtained
 - Option A is dimensioned with a 30 kW electrolyser and able to produce 25% of the natural gas demand
 - ✓ Option B is bigger with a 72 kW electrolyser and able to produce 60 % of the natural gas demand.
- ✓ The conclusions showed that with actual costs both installations were not feasible without subsidies.
- Nevertheless, social and environmental benefits (employment and CO₂ reduction) are relevant for the touristic region if these systems are installed

Power to Gas in Aragón CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP

2. PtG – AMINE PLANT

- O₂ from electrolysis replaces ASU
- Heat from methanation can be integrated in the power cycle of the power plant

- Heat from methanation is integrated in the reboiler of the stripper column
- O₂ integration depends on the application

APPLIED CASE: Power to Gas – Electrochemical industry (real case)

Bailera et al. (2017) Appl. Energy, 202, 435-446

Power to Gas in Aragón

APPLIED CASE: Power to Gas – Electrochemical industry (real case)

Electrochemical plant

The EC plant follows the low cost periods of the electricity market

Useful chemical products are obtained by processes of electrolysis that sub-produce H₂

The EC plant needs steam, which is produced in a natural gas boiler. Flue gas can be recycled to SNG with methanation and amine carbon capture

Heat from methanation can be integrated in the amine plant or can be used to produce steam

Bailera et al. (2017) Appl. Energy, 202, 435-446

Power to Gas in Aragón

APPLIED CASE: Power to Gas – Electrochemical industry (real case)

Size and economics

Selected methanation plant:

- \checkmark 6 MW of H₂ input
- ✓ H₂ buffer of 1000 Nm³ (criteria: small to reduce costs)
- 6070 h (criteria: > 6000 h)
- ✓ 85.9% H₂ used (criteria: > 85.0%)
- ✓ 58.2% CO₂ used (amine plant's nominal output: 524 Nm³/h)

CAPEX (5.1 M€)

- ✓ Amine plant, 523 k€
- ✓ Methanation plant, 2158 M€
- ✓ Heat exchanger network, 180 k€
 - Other (direct costs), 1316 M€
- ✓ Other (indirect costs), 960 k€

OPEX (215 k€/year)

✓ MEA, catalyst, electricity, O&M...

INCOMES (1.0 M€/year)

- ✓ Natural gas savings, 978 k€/year
- Steam savings, 36 k€/year

Power to Gas in Aragón

APPLIED CASE: Power to Gas – Electrochemical industry (real case)

Size and economics

Selected methanation plant:

Pay-Back: 8 year

Internal rate of return: 8.96%

Net Present Value: 4.76 M€

оэ.э% н₂ useu (спцепа. > оэ.у%)

^{58.2%} NG price: 28.99 €/MWh (amine plant's nominal output: 524 Nm CO₂ credit price: 0 €/t_{CO2}

Project lifetime: 20 years

Bailera et al. (2017) Appl. Energy, 202, 435-446

Power to Gas in Aragón

INDEX

- ✓ 1. CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP
- ✓ 2. POWER TO GAS AND CO₂ RECYCLE
- ✓ 3. RENEWABLE ENERGY & CO₂ POTENTIAL IN THE PYRENEES
- ✓ 4. POWER TO GAS CARBON CAPTURE HYBRID SYSTEMS

✓ OXYFUEL

✓ AMINE PLANT

5. CURRENT RESEARCH

✓ 6. HIGHLIGHTS

Power to Gas in Aragón

 \checkmark

CURRENT RESEARCH

MERCURIA PROJECT

- Pilot plant installation (equivalent to a 5 kW electrolyser and two atmospheric pressure methanation reactors)
- Analysis of operational variables as input gas impurities, transient response to temperature changes and heat transfer.
- Thermographic analysis: On-line monitoring with an infrared camera for the measurement and control of catalyst temperature.
- Proposals and analysis of configurations of Power to Gas applications in residential, transport and industrial sectors.

Power to Gas in Aragón CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP

INDEX

- ✓ 1. CO₂ CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP
- ✓ 2. POWER TO GAS AND CO₂ RECYCLE
- ✓ 3. RENEWABLE ENERGY & CO₂ POTENTIAL IN THE PYRENEES
- ✓ 4. POWER TO GAS CARBON CAPTURE HYBRID SYSTEMS
 - ✓ OXYFUEL
 - ✓ AMINE PLANT
- ✓ 5. CURRENT RESEARCH
- ✓ 6. HIGHLIGHTS

Power to Gas in Aragón

HIGHLIGHTS

- ✓ Based on an analysis of the availability of renewable energy resources, it has been concluded that hydropower is the best option to be used jointly with Power to Gas in the Pyrenees region
- Power to Gas-Carbon capture hybrid systems allow to recycle CO₂ in closed loops
 - PtG-Oxycombustion avoids, both CO₂ storage and ASU, energy penalizations in small applications
 - PtG-Amine in chemical industry is economically FEASIBLE, and it avoids CO₂ emissions and saves natural gas
- Current research is focused in the design and operation of a PtG pilot plant installation and the analysis of configurations of PtG applications in residential, transport and industrial sectors

•

Thanks for your attention!

Acknowledgements

The authors would like to acknowledge funding from the R+D Spanish National Program from Ministerio de Economía y Competitividad, MINECO (Spanish Ministry of Economy and Competitiveness) under project ENE2016-76850-R.

CO2 CAPTURE-USE AND INDUSTRIAL EMISSIONS MITIGATION GROUP

Mechanical Engineering Department Escuela de Ingeniería y Arquitectura. Universidad de Zaragoza (Spain)

