RENOVAGAS Project

ELYntegration Workshop Zaragoza, 8th November 2017

José A. Lana Enagás, S.A.

Enagás, S.A.

- Technical Manager of Spanish gas system.
- International leader in the management of gas infrastructures

Why to use natural gas network for hydrogen distribution?

- Solve the lack of hydrogen • distribution networks.
- Allows integration of power and gas • networks.
- Allows to use the high storage and • transmission capacity of natural gas networks.

Fuente: Enagas.

Injection of hydrogen in natural gas network

- Limitation in the amount of hydrogen that could be admixtured with natural gas.
 - Integrity of infrastructures.
 - Safe and efficient utilization.

Summary of identified actions for x vol% H_2 in the gas grid				
2 vol% H2	5 vol% H2	10 vol% H2		
Gas turbines (e.g. performance/durability/legal iss.)	Same as for 2 vol% H2 plus:	Same as for 2 and 5vol% H2 plus:		
Underground storages (porous) (e.g. bacteria growth)	CNG on board tanks Fatigue induced failure /vehicle regulation and standardisation	Compressors (e.g. performance)		
Gas as feedstock (e.g. effect on processes regarding performance, efficiency)		Underground storages (caverns) Installations and bacteria growth in underground cavern storages		
		Safety and grid integrity		
		Industrial/residential burners and engines (e.g. performance)		

Fuente: G. Müller-Syring & J. Dubost, CEN/TC 234 Workshop on Hydrogen in Natural Gas (H2NG), 29th March 2017, Brussels.

Domestic appliances works safely in this range.

• Before injection, each operation should be assessed in a case by case basis.

enagas

Power to Methane

One option to solve hydrogen issues in natural gas network is *Synthetic Natural Gas, SNG*:

- Methane with traces of reagents.
- $CO_2(g) + 4H_2(g) \rightarrow CH_4(g) + 2H_2O(g).$

SNG is fully interchangeable with natural gas.

• No problems in transmission and utilisation.

Injection only limited by the capacity of natural gas grid.

If CO_2 is from a renewable source \rightarrow **RENEWABLE GAS**.

• CO₂ from biogas to produce renewable biomethane.

RENOVAGAS Spanish Joint Industrial Project

- The aim was to develop a technology for production of Synthetic Natural Gas, SNG, from renewable sources.
- Funded by Spanish Ministry of Economy and Competitiveness (MINECO) within the framework of the National Programme for Research Aimed at the Challenges of Society.

- Budget 2.16 M€ (1.19 M€ funded by MINECO).
- Duration: 30 months, December 2014 to May 2017.
- Lead by Enagás.

It is foreseen a escalation of the technology in two future phases

- To develop and construct a 15 kWe Power to Gas plant (SNG), using H_2 from water electrolysis and CO_2 from a biogas stream.
- To optimise H₂ production from renewable energies by means of an optimised control.
- To develop a new catalyst.
- To develop a new reactor.
- To test the pilot plant in real condition.
- Detailed engineering for a larger plant, phase 2: 250 kWe.
- To estimate future renewable power and biogas availability in Spain.
- Economical study to show the feasibility of this technology.

The SNG should have a quality fulfilling Spanish specifications.

Electrolizer

- Alkaline electrolyzer, based on anionic exchange membranes (AMWE).
- New control system to improve integration with RES.

Alkaline	
2 m³(n)/h	
35 bar	
99,94 %	
4.8 kWh/m ³ (n)	
15 kW	

Catalyst

- Based on nickel & ruthenium.
- Allows direct conversion of biogas to SNG.
 - Biogas: 65 % CH_4 + 35 % CO_2

CO2 conversion (%)

- High selectivity to methane formation.
- High carbon dioxide conversion.
 - Higher than the nickel based commercial catalyst.
 - Allows a reduction in reactor size.

enagas

Methanation Reactor

$$\begin{array}{c} CO_{2(g)} + 4\,H_{2(g)} \rightarrow CH_{4(g)} + 2\,H_2O_{(g)} \\ \\ \Delta H^0_{\mathcal{R}} = -165\,kJ/mol \end{array}$$

- Multi channel technology:
 - 388 channels.
 - Few millimetres diameter.
 - Allows reaction in one step.
 - Good management of temperature control.
- Thermal oil used for temperature control.
 - No heat recovery in this project phase.

Renova

as

Plant integration

- All equipment installed in a 6 m container:
 - Electrolyzer.
 - Biogas booster.
 - Reactor.
 - Auxiliary systems
- Development of a fully automatic control.

Test on real condition

- Jerez de la Frontera, Spain.
- Installation in WWTP.
- Conected to a biogas plant.
 - Biogas cleaning needed (critical issue with a catalytic reaction).

Methanation results

- Good CO₂ conversion.
- High selectivity to CH₄.
- Stability of reaction.

liom	nno
nen	ipo .

_____CH4 ____H2 ____CO2 ____N2

No	Test	CH₄ %-mol	N ₂ ppm	CO ₂ %-mol	H₂ %-mol
1	80-100% nominal load	95,5	280	1,68	2,75
2	60% nominal load	95,5	690	2,96	1,41
3	100% nominal load	95,9	600	0,085	3,88

Scale up to 250 kW Detailed engineering

Spanish potential Power and CO₂ availability

- *Projection to 2020 and 2030.*
- Future surplus of RES according to different scenarios.
- High uncertainty for 2030.
- CO₂ availability from biogas according to future development.
- Best location according to electricity and gas grid.
- *Main finding*: it is possible to store 10000-12000 GWh of power as SNG (0.6 bcm) in 2030.

Economical study

250

- Based on LCOE as indicator. ٠
- Main inputs: ٠
 - Two size plant: 250 kWe & 5000 kWe.
 - 3000 h/y utilisation.
- Sensitivity study of main inputs. ٠
- Main finding: •
 - Influence of working time, hour/year.
 - Size: intensive in capital expenditure.
 - Electricity price, main operational cost.

Ec Se	onomical study nsitivity study to mai	in inputs / Com	parison	Renova
LCOE (€/MWh _{sNG})	600 500 400 300 200 100 0 Chiciny cost make scost we of mostion to the store of the store	overy neurs It hours		
	250 kW Plant 55 KW Plant 250 kW - Base	Rentative Annual Working Annual Annual Working case	Author	Estimated cost of SNG (€/MWh)
		RENOVAGAS, 2016		30 -570 (1) 70 - 240 (2)
		Ritcher, F., 2012		15 - 250
Müller-Syring, G. et al, 2013				32 - 900
Pedersen, A.H., 2013				73 - 645
	(1) All the scenarios simulated	SBC Energy Institute, 2014		40 - 400
	(2) Only scenarios with 3000 h/y	Pedersen, A.H. & Wie	rsma, K.G., 2015	25 - 350
	working time.	WEC, 2016		200 - 700

Conclusions/Results

- Design and integration of a 15 kWe PtG installation.
- Development of a new catalyst for the methanation reaction between H_2 and CO_2 , in a biogas stream, with better properties than commercial ones.
- Design and assembly of a multi-channel reactor which improves methanation reaction due to gas contact maximization and heat management.
- Good quality of SNG obtained.
- Basic and detailed engineering of a 250 kWe PtG plant.
- Identification of Spanish SNG generation potential according to different RES and biogas forecasts.
- Economic study showing the conditions that must be fulfilled in order to achieve this technology be profitable without subsidies.
- Phase 2 in preparation.

Thank you for your attention

Any question?

