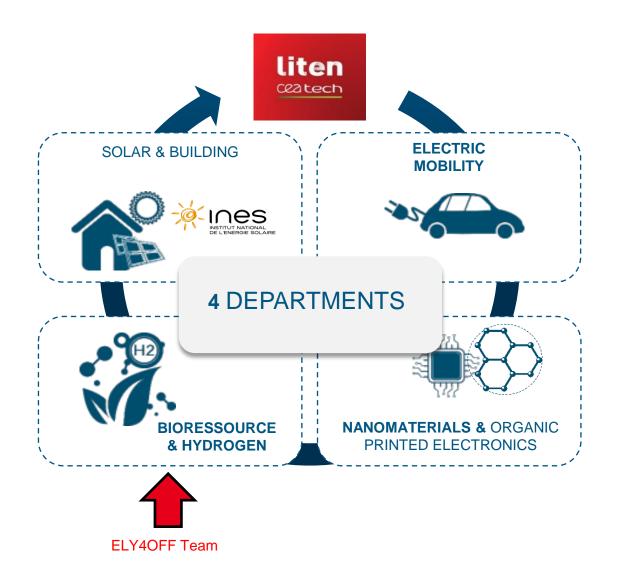
liten ceatech

ELECTROLYSIS WORKSHOP


ELY4OFF | Bourasseau Cyril

liten

Ceatech

RCS IN ELY40FF

- <u>Objective</u> : identify barriers and suggest recommandations to overcome them
- 2 steps:
 - Literature study
 - Use of HY4ALL database for specific use cases
- Use cases
 - Electrification of isolated site in Denmark
 - Gas grid injection in Scotland
 - **Mobility** application in Sweden
 - Industrial application in France
- Main conclusions
 - Very interesting and useful database !
 - Very different barriers and risks depending on applications and countries
 - Hydrogen production is generally not the problem but application is !

	Application	HYLAW topics	HYLAW: no barriers
	Electrification	Stationary FC: Installation requirement	Norway, Sweden, Finland, Germany, Latvia, Denmark, Belgium, Netherlands, France and Spain.
		Stationary storage: land use plan	Norway, Sweden, Belgium, Spain, Denmark, Romania, Bulgaria.
1		Stationary storage: permitting requirements	Norway, Sweden, Germany, Denmark.
		Production H2 (localised): simplified process	Sweden, Germany
		Production H2 (localised): land use plan	Norway, Sweden, Latvia, Germany, Netherlands, Belgium.
		Production H2 (localised): permitting process	Norway, Sweden, Latvia, Germany, Denmark.
		Production H2 (localised): permitting requirements	Norway, Sweden, Germany.
	Gas grid injection	Legal framework: permissions and restrictions	None
		Permission to connect/inject	Norway, Germany
		Payment issues	Sweden, Germany
		H2 quality requirements	Sweden, Germany, Denmark, Latvia
		Safety requirements	France, Latvia
		Safety requirements to end-use equipment	Norway, Latvia
2		Legal framework: permissions and restrictions	Norway
		Permission to connect/inject	Norway, Germany
		Payment issues	Norway, Sweden, Germany, Denmark, Netherlands, Belgium
		H2 quality requirements	Norway, Sweden, Denmark, Netherlands, Belgium
		Safety requirements	Norway, Denmark
		Safety requirements to end-use equipment	Norway
	Mobility	Stationary storage: land use plan	Norway, Denmark
		Stationary storage: permitting requirements	Denmark, Norway, Germany, Belgium, Netherlands, France, Portugal, Italy, Austria.
		Production H2 (localised): simplified process	Denmark
3		Production H2 (localised): land use plan	Norway, Sweden
		Production H2 (localised): permitting process	Norway, Sweden, Austria, Denmark
		Production H2 (localised): permitting requirements	Norway, Sweden, Germany, Netherlands, Spain
	Industrial	Production H2 (centralised): land use plan	Norway, Sweden, Latvia, Germany, Netherlands, Belgium.
		Production H2 (centralised): permitting process	Norway, Sweden, Latvia, Germany, Denmark.
4		Production H2 (centralised): permitting requirements	Norway, Sweden, Germany.

Fig: Countries with no barriers for each application

BARRIER		Severity of the barrier	
Legal	Production H2 (localised): simplified process	Medium (structural barrier)	
Administrative	Production H2 (localised): land use plan	Medium (structural barrier)	
(from HyLAW database)	Production H2 (localised): permitting process	Medium (Economic barriers, Operational barrier)	
	Production H2 (localised): permitting requirements (including safety distances)	Medium (operational barrier)	
	Production H2 (centralised): land use plan	Medium (Structural barrier)	
	Production H2 (centralised): permitting process	Medium (Economic barriers, Operational barrier)	
	Production H2 (centralised): permitting requirements	Medium (operational barrier)	
	Stationary storage: land use plan	Low (operational barrier)	
	Stationary storage: permitting requirements	Medium	
	Road Transport : Road planning	No barrier	
	Road transport : permitting process / requirements	No barrier	
	Road transport : Quantity and pressure limitation	Medium (cost)	
	Grid connection : legal status of power to gas plant	High (regulatory gap)	
	Grid connection : Power-to-gas plants and their role in the electricity balancing market	Low (operational barrier)	
Economic	Cost of H2	High	
	Cost of high pressure storage	Medium	
	Lack of infrastructure	low	
Societal	Green H2 for industrial applications	No barrier	

Fig: Illustration of barrier severity for 1 application

BUSINESS CASES : APPROACH FOR ELY40FF

Objective : Techno-economic evaluation of 2 business cases through time-step simulation

3 business cases

liten

Ceatech

- Electrification of isolated sites
- H2 injection into the gas grid
- Mobility application
- Comparison of:
 - Different locations (Northern and southern Europe)
 - Different renewable ressources (PV, Wind, Hydro)
 - Different load profiles for each considered application
- Represented system
 - ELY4OFF under operation in specific application
 - Integration of specific application constraint
- Indicators
 - LCOE : Levelized Cosot of Electricity
 - LCOH₂: Levelized Cosot of Hydrogen
 - Unmet load : Statisfaction
- ODYSSEY Software
 - **Simulation** the operation of the modelled system / hourly time step
 - **Optimisation** of the size of the component to satisfy the load while minimizing the cost
 - Sentivity analysis of

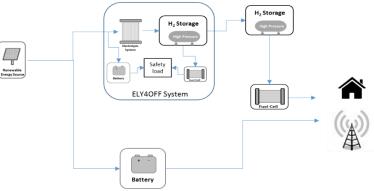
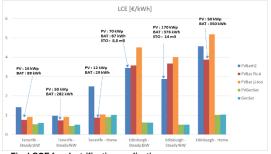


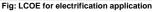
Fig: illustration of ELY4OFF system for specific application

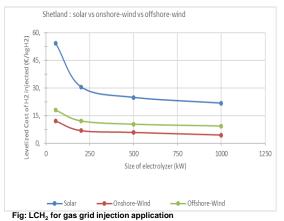
Fig: ODYSSEY software for tehcnico-economic evaluation

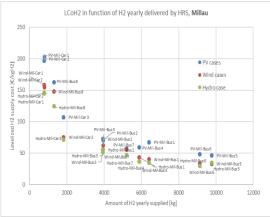
BUSINESS CASES : RESULTS ILLUSTRATION

Electrification of isolated site (Scotland and Spain)


- LCoE for simulated isolated configurations. Observed LcoE range is from around 500 €/MWh to 5000€/MWh.
- High values can be explained (i) by the small size of the considered system (5 kW peak power) and (ii) by the strict autonomy necessity leading to a massive oversizing installed PV surface.


• Gas grid injection (Scotland and France)


- Range of LCoH from 4.5 to 50 €/kg was observed and strong impact of (i) location, (ii) renewable source and (iii) size of electrolyzer appears.
- They may compete with biomethane injection costs (Feed-in-Tariff reaches 5.5 €/kg in some European countries) but not with the natural gas price today (0.91 €/kg in hydrogen equivalent) although CO2 emissions comparison should be taken into account in this case.


Mobility (Iceland and France)

- In Millau, LCoH ranges from 200 €/kg for smallest PV installation to 35€/kg for larger hydro and wind installations.
- In Iceland, from 260 €/kg for smallest PV installation to 34€/kg for larger wind installation.
- For high LCoH, the cost of hydrogen refueling station is very important (up to 60% of the total cost in some cases).
- Autonomy leads to an oversizing of renewable source (40 to 70% of renewable power is not used) and hydrogen storage to satisfy the load.

BUSINESS CASES : MAIN LEARNINGS

liten

(22tech

- Based on the modelling and simulation work carried out in task 6.6: although cost of full off-grid hydrogen remains high, each of the three evaluated applications from a techno-economic point might be interesting under certain conditions.
- Off-grid hydrogen may represent benefits compared to competing technologies:
 - For electrification of isolated site with high seasonality of renewable power is observed;
 - For gas grid injection when renewable power factor is high and gas grid constraints are limited;
 - For mobility when renewable power factor is high and low carbon mobility is valued.
- Strict off-grid conditions AND 100% load satisfaction leads to important oversizing of the renewable power plant
- Strict off-grid conditions lead to significantly higher cost of electricity (LCoE) or hydrogen (LCoH) but may be, in the future, necessary to valorize important renewable power potential and guarantee low carbon hydrogen production for various applications.

MERCI POUR VOTRE ATTENTION

THANKS FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs | 38054 Grenoble Cedex www-liten.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019