RANEY-NI ELECTRODES FOR THE ALKALINE ELECTROLYSIS OF WATER

C. I. Müller, Department of Hydrogen Technology Fraunhofer IFAM Dresden

International Conference on Electrolysis

Dr. Christian Müller (christian.mueller@ifam-dd.fraunhofer.de)

Electrode Materials for AEL

Low Voltage at a High Current Density Energy H₂-production rate

- Demands
 - Stability
 - Degradation < 3 µV/h^[A]
 - Life-Time Stack > 90 000 h (10 a)
 - Electrochemical Activity
 - Cell-voltage 1.8 2.2 V (< 0.6 A/cm²) ^[A]
 - Costs
 - Investment costs of the system < 1000 €/kW_{el}^[A]

A

Hydrogen: Electrodes with a large surface area

- Structuring the surface of flat and porous materials
- Structures in the range of 100 nm to 100 µm possible
- Surface enlargement up to 10000-fold possible

[A] AMORPHEL (0327899A), funded by the BWMi of the Federal Republic of Germany. [B] Green-H2 (03ET6058), funded by the BWMi of the Federal Republic of Germany. [C] ELYntegration, funded by FCH-JU under grant agreement No 671458, FCH-JU receives support from the European Union's Horizon 2020 program.

Hydrogen: Electrode production techniques

- Powder metallurgical route
 - Sintering of a powdery precursor
- Electroplating
 - Electrodeposition of dissolved species
- Laser ablation process
 - Femto-second pulse process
- Rapid quenching technique
 - Amorphous ribbons

[A] AMORPHEL (0327899A), funded by the BWMi of the Federal Republic of Germany.
[B] Green-H2 (03ET6058), funded by the BWMi of the Federal Republic of Germany.
[C] ELYntegration, funded by FCH-JU under grant agreement No 671458, FCH-JU receives support from the European Union's Horizon 2020 program.

20 µm

200 µm

ger et al. Ivdrogen

Magn 800x

Magn

100x

@ Schiller et al. (1996) J. Therm. Spray Technology, 4,185

a

20.18

5792

498X

@ Rausch et al. (1996), J. Electrochem. Soc., 143, 2852.

Synthesis of Raney-Ni electrodes

- State of the art:
 - Electroplating (NiZn) \rightarrow batch process, doping difficult
 - VPS (NiAl) \rightarrow batch process
- Approach: sintering → scalable (continuously produced), different alloy compositions possible, stable connection of catalyst to substrate
 - → costs < 300 €/m²

IFAM Institutsteil Dresden

Sintered Raney-Ni electrodes (Raney-3)

- Substrate Ni-mesh (Dexmet)
 - Al-powder-mesh-ratio (PMR): 17.1 % (calculated after sintering)
 - Ni-mesh perfectly surrounded by NiAl-phases

Ni-mesh: enlarging the surface area

Raney-Ni production via a powder metallurgical and a chemical process

- Porous layer is formed \rightarrow strongly increased surface area
- No delamination of the Ni₂Al₃-phase detectable, due to the sintering process → good stability

Sintered Raney-Ni electrodes (Raney-1)

- Substrate Ni-mesh (Dexmet)
 - Al-powder-mesh-ratio (PMR): 10.1 % (calculated after sintering)
 - Ni-mesh perfectly surrounded by NiAl-phases

4. Results

HER activity of sintered Raney-Ni electrodes

- Raney-1: 10.1 % PMR
- Raney-2: 15.8 % PMR
- Raney-3: 17.1 % PMR

Higher PMR value causes a higher HER-activity

Electrochemical surface area

- Determining the double layer capacity $C_{dl} \rightarrow i_c = C_{dl} \times v$
 - CV-pretreatment, in order to remove H-ad and M-H
 - C_{dl} determined at the OCP (-400 to -600 mV)

Electrochemical surface area

- Correlation between PMR and C_{dl}
- Correlation between η_{300} and C_{dl}
 - → Main effect: enlarged surface area
 - \rightarrow Minor effect: increased intrinsic activity

Fraunhofer

Accelerated stress test using ultrasonic treatment

- Accelerated Stress test (AST)
 - GS @0.3 A/cm²
 - Ultra sonic treatment for 30 s
 - GS @0.3 A/cm²

3. Synthesis

Raney-1 (lowest PMR)

- Degradation detectable
- delamination of Raney-catalyst
 - Due to eruptive gas bubble evolution
 - Due to M-H formation

Cyclic voltammetry

- Formation of Ni-H_{ads} and Ni-H (Nickelhydride) before and after HER
 - self-ignition of leached Raney-Ni due to Ni-H_{ads} and Ni-H formation!
 - Formation of Ni-H is accompanied by a volumetric expansion of the phase → delamination
 - Potential shift of the cathode above
 -0.8 V should be prevented during
 down time of ELY!
 - No peak observable for the second scan
 - Deactivating of leached electrodes

3. Synthesis

HER + OER

- Calculate cell voltage (only electrode overpotential) around 1.71 V @ 0.3 A/cm²
- @3000 A/m² → 1.684 V (cell voltage)
- 45,8 kWh/kg_{H2} \rightarrow 4.58 \in /kg_{H2} (0.1 \in /kWh electricity costs)

Summary

- Raney-Ni electrodes developed using sinter technology
 - Higher PMR beneficial for HER-activity
 - Main degradation due to delamination of Raney-Ni layer
 - Caused by formation of Nickel-hydride (volumetric expansions)
 - Potential shift of the cathode above -0.8 V should be prevented during down time of ELY
 - CV can be used to deactivate the leached electrode for safe handling
 - Calculate cell voltage (only electrode overpotential) around 1.71 V @ 0.3 A/cm²

Acknowledgement

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 671458. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Spain, Belgium, Germany, Switzerland.

Fraunhofer